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SYSTEM AVAILABILITY: TIME DEPENDENCE AND STATISTICAL INFERENCE
BY (SEMI)NON-PARAMETRIC METHODS.

D.P. Gaver
P.A. Jacobs

1. INTRODUCTION.

Component or system availability generally refers to (a) the

probability that the item of concern is operable or "up” and mission-
capable at a point or during a period of time, or to (b) the fraction
of time, or of demands if the item is on standby, for which the system
is up. Applied to large systems such as entire U.S. Navy ships, system
availability is referred to as readiness. At a different level, the
availability and fault-tolerance of computer systems, both government
and commercial, is of concern, and has recently been extensively
modelled and simulated; see Goyal, Lavenberg and Trivedil. The
availability concept is also relevant when discussing the safety and
productivity of commercial nuclear power plants; in that arena it is
quantified by probabilistic risk assessment (PRA). Related [inite
state stochastic models also occur in medical studies; c.f. Cox2,
JacobsS.

Component or system availability is influenced both by the
inherent failure-proneness of the item and by the time and resources it
takes to restore a failed item to service. Times to failure or “up
times"and to restoration or "down” times may vary considerably. and not
necessarily independently, depending upon the mode of failure. the time

required to diagnose the failure including the access to (including
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competition for) diagnostic equipment and human skills, the
availability of spare parts (logistic delays), and other factors. It
is also quite conceivable that the quality of the repair activity
influences future times to failure. This effect is not recognized by

the usual models; but see Gaverd (pp. 775-800), and Thomas, Jacobs and

Gaver®. Incorporation of "availability growth” in availability

situations is a practical i1ssue that is not frequently modelled; see
our Section 2 below, hcwever.

-

r - The present paper addresscs the assessment of simple system

PR

availability wlen there is concern about (a) time-dependence, so

demands for system performance are not necessarily when the system is

in "steady-state,” as is often assumed, and when (b) information about

system failures and repairs is in the form of pbserved data so

1.
questicns of statistical influence arise. The methods and models
involved lean towards the semi-parametric or non-parametric; in

particular we employ the empirical Laplace transform in the time-

dependent scenarios of interesty non-parametric estimation in assumed
steady-state situations has been studied by Gaver and Chu6. Other

8 and Ascher and Feingold9

investigations, e.g. Cox7, Gross and Harris
have been overwhelmingly concerned with estimation in presumably well-
specified stochastic (queueing, Markov)(models: considerations of model
mis-specification are seldom broached. Heré we propose analytically

simple approximations to time-dependent system behavior. and assess the

effects of model specification ("up” and "down" time dependeince) upon

—

‘ates of approach to a long-run steady state as the latter are
esxtimated from available data (assumed to be a random sample).

lnecertainty assessments (confidence limits and standard errors) are




furnished. More elaborate procedures involving Bayes or empirical
Bayes setups that permit "strength borrowing” (in John Tukey’s phrase)
are not addressed here, but are agenda items.

Our paper’s plan is as follows. Section 2 describes a selected
group of probability models for simple system availability; no
comprehensiveness is claimed. Solutions are given in terms of Laplace
transforms, all of which are rendered immediately interpretable in
terms of the random-time-of-demand or observation parad.gm, described

10. Section 3

originally and applied to transform inversion in Gaver
de=cribes and ”fits” the simple exponential-approach-to-steady-state
model used for representing time-dependent behavior; see Odoni and
R.oth13 and Gaver and Jacobslluliere such an idea was used to represent
t ime-dependent queueing behavior. Section 4 introduces issues of

estimating time-dependent availability where only statistical data is

at hand. Section 5 presents a variety of numerical illustrations.
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2. TIME-DEPENDENT AVAILABILITY: MODELS, TRANSFORMS, AND THE RANDOM
OBSERVATION (ROBS) INTERPRETATION.

Consider a system that is active or operative ("up”) until failure
occurs, after which a "down” period occurs, at the termination of which
a new up period begins, and so on. Suppose the system is to be
responsive to a randomly appearing demand; what is the probability that
it will respond properly, or be available, at the time of the demand?
In the military arena the device might be a surveillance (radar, sonar)
or communications system. In the commercial nuclear power context it
might be a coolant pump.

There are many versions of this problem. The simplest and most
traditional imagines that the system operates continually between
failures, and failure is instantly detected upon occurrence. Up times
may be modelled as iid random variables, either directly or indirectly.
If the system is redundant a new up time begins at the instant an old
one terminates, with repair off-line. Down times may also be iid.
However, there are many plausible exceptions to these scenarios, a few
of which are considered next.

Here are various sample model formulations; the list is by no
means complete. In all of these the system is up at t = 0O:
modifications are straightforward.

Model 1: wup times are iid {U;}, with df F_ (x); down times are iid
{D;}. d.f. Fp(y). A(t) = P{System up at tjup time starting at t = 0}.
Then, by a simple backward renewal argument., A(t) satisfies the

integral equation

t
A(t) = F(t) + JO A(t-v)Fe(dv) (2.1)

|
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where Fo(t) = Fy=xFp(t), the convolution. Laplace-transforming,

A(s) = J:o eStA(t)dt = [11 - Fﬁu((ss))]
s - Ic

(2.2)

If the item is observed or demanded at random time T ~ exp(s) then

E[A(T)] = J:O se®tA(t)dt = I-_—ELC’% (2.3)
and since E[T] - 1/s = r, the probability of being up upon demand is
1 - ﬁu(rd)
20(n) = BIAMD] = —r (2.4)
- B E(U] as 1 — (2.5)

E[C] ~ E[U] + E[D]

by Taubcrian/Abelian results; see Feller (1966). One can view (2.4) as
the availability under random demand or observation; ROBS for short.

To emphasize the fact that exponential random observation is involved

we utilize EROBS. The last formula, written here as
E[U]
20 (™) = FrT 7 BID] (2.6)
is the widely-applied long-run availability. It may well be inappro-

priate in many of the contexts in which it is applied.

Note ., though., that

1 - Fy(r™h

fg (r) = 1 E ( _1)




has a definite interpretation for all r. It is usually easily computed
and interpreted whenever transforms of U and D (or C) exist. As will
be seen, it can be estimated from data under many circumstances--even
when the model selected has either E[U] or E[D] infinite and (2.6)
becomes uninteresting.

Here are several additional models whose transforms can be
directly written down, and directly interpreted under EROBS demands.

Model 2: The initial up time Uy has df FUO; {b, + 4 = C,

i =1,2,...} are iid and independent of U,;. This attempts to model a
situation in which the quality of maintenance during a down time
affects the distribution of the next up time, so these times are

dependent: the influence stops at that point, however. Let Ap(t) =

P{system not up (down) at t|down time starts at t = 0}. Then

t
Ap(t) = Fp(t) + Jo Ap(t-r)Fc(dr)

and

1 if Uy > t,
A(t) = {

Ap(t-Up) = 1 - Ap(t-Uy) if Uy < t »

t

t
A(t) = Fy (1) + J [1 - Ap(t-r)]Fy (dr) = 1 - Jo Rp (t-1)Fy_(dr).

0

Transforming gives o

6
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) 1 - Fe(s) - Fy (s) + F, (s)Fp(s)
A(s) = 4 9 0 (2.8)
1 - Fe(s)
from which the observational probability ag(r) can be immediately
written down: ag(r) = TdA(rd)‘ Models that propose that the up time

can positively influence the duration of the following down time have

been formulated; see Gaver?,

Model 3: (Random changepoint model; “reliability growth”). Suppose
the system fails according to up times {U;. i = 1,2,...1}, iid F,(u)
and thereafter {U,, i = I+1,1+2....}, iid Fp(u): I ~ p; is the change-
point and is associated with diagnostic-repair activity. Let Fp(u)
describe the iid down times {D;, i = 1,2,...}. Suppose the system

starts operation as a Type 1 up time, transitioning after a random
number of down times to Type 2. Let AU(t) denote the probability that
the system is up and in state j at time t given it is up at time O,
i.e. t is contained in an up time of Type j. Then, using backward

renewal arguments,

t
A () = Fyg(t)y + (1-py) JO Ajj(t-r)Fi(dr)
_ t
Ay (t) = Fyu(t) + J A22(t—r)F?C(dr) . (2.9)
0
and
t
‘\lz(t) = J A22(t—r)G(d”‘) N
0
where

G(r) = pF(r)

I~

—
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Transforming

as before F-(r) reters to the df of a cycle time Uji + Dj.

immediately produces a solution:

All(s) =1 L - FIUQS)

51 - (1‘P1)Flc(s)
Agp (s 1 L= Pay(s 2.10)
22(s8) = & L - [:‘zc - (2.

A (s) = AyG(s)

and

Pi(Plc(S))i = P(ﬁ‘lc(s)) s

this last being the generating function of the number of repairs to

transition rv,I. Assemble to obtain the transform of the probability

of being up at t:

Ay(=s) = J e SUAL (1) + AL () ]dt = A (s) + Ap(s)

|
hi—

1~ Fiy(=) N 1 - Foy(s)
= + F s | . (2.11)
E - (1-pp)Fic(s) P( e )> 1 - cm(s)]

Consequently the observational probability

~_
o
—
y -
£
—

o [~ Ty, (1/7) . 1 - Fo(1/7) ]
an(r) = KIA(] = 1V I 1 =2k
10(r) = E[ACT)] L o F st M /) T/

B,
FTU,T + F[D]




but the latter limiting formula provides no information about the

availability at early times, possibly before change has taken place.

The EROBS random demand formulation at least allows some information to
be obtained in a very direct and meaningful manner by just evaluating
the transform itself numerically.

Model 4: (Markovian changepoints). It is possible that a system
alternates slowly between failure states. either temporarily or
forever. The random motion may be in response to occasional changes in
maintenance practices, to debugging (reliability growth). or to ageing
(reliability decay) and subsequent replacement. To illustrate. let
there be just two failure distribution states., as in Model 3. but let
{pu; i,j = 1.2} be the transition probabilities of a Markov chain that
governs jumps between them. Suppose the system starts in state 1. at
the beginning of an up time U; ~ Fiy(r), i = 1,2. Then, letting Au(t)
be the probability the system i1s up and in state j at time t given it
just started an up time at time O and was in state i,

B t t
A () = Fig(v) + ppg «[0 A (t-r)Fyc(dr) + pysp J() Ay (t-r)Fic(dr),
t t
Ao () = pys JO Ags(t-T)Fic(dr) + pq, JO A (t-r)Fc(dr). (2.13)

t

1
~ . [
0 0

t

‘\12(t“r‘)l‘12c(dr) .

t
As (V) = poy J A (t-r)Fyc(dr) + py,y J Ay (t-r)Fye (dr) .
0 0

Transforming vields these equations.,

1$)

.

A

N4
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a

5‘11(5)

A (s)

Ayr (S)

Ay ()

Solve

All(s) =

1 - Fyy(s) - - - N
——F— + p A (S)F 1 (8) + PraAa(8)Fyc(s)

= p1aAyy (s)Fic(s) + prAa(s)Fic(s)

1 - Fyou(s 1 £ A 2
Lo FoulS) | R5n(8)Bpe(s) + porhia(s)Poc(s)

= pyiA11(8)Fac(8) + ParAqg (s)Fyc(s).

(2.14,a) and (2.14,d) simultaneocusly to get

1 - ?lu(s)

Pl

l:l - puFic(s) - P12P21ﬁ1c(S)cm(s)/(l‘Pzzf‘"zc(S)

From (2.14b,c),

;\12(S) — é . 1-_ F‘2UA(S)
L-pyrFoc(s) ‘P21P12F1C(S)F2C(S)/(1—P11ﬁ1c(s))

. ( P12?}c(s) )
1-p11Fic(s)

It follows that if r = 1/s,

= sf\n = S[All(s) + ;\12(8)]

1 - Fiy(s)
[1-Py1Fic(s) ‘Plzpzlﬁlc(s)F2C(S)/(1‘P22?2c(S))

J‘{)22F2C(‘q)"pIZPQIFIC(S)F2C(S)/(l ‘PuFlc(S))

+

. ( P1oF1c(s) )
L-pnFhc (=)

10

ﬂ

(2.14,a)

(2.14,b)

(2.14,¢)

(2.14.d)

(2.15)

(2.16)

ek




The above formula is manifestly opaque as it stands. Tauberian/

Abelian results present the long-run behavior:

E(U,]

= 1i A = 2.1
(=) = Lin s () = gre T 5 (0 pa ) E1C] (219
and
E[U,]
ais(00) = ~——— 2.19
12(20) E[C] + (p21/P12) E[C,] ( :
so the sum
E[U,] E[U,]
= + = + =
ap(e) = a(0) + ay5(0) E[C,] + (P12/P21)E[C,] 7 E[C,] + (P21/P12)E[Cy]
(2.20)
represents the long-run probability that the system is up. Of coirse

a;(r) for r finite is available from (2.17) and potentially provid s
considerably more information.

Many other such models can be constructed and "solved” by
transforms. In what follows we illustrate the way in which such
transform solutions can be exploited to yield time-dependent and
inferential information. The intention is to provide simple and
flexible approximate information rather than to utilize more exact. but

also more computationally demanding, procedures.




3. TIME-DEPENDENT AVAILABILITY AT FIXED OBSERVATION TIMES (FOBS):
SIMPLE EXPONENTIAL REPRESENTATIONS.

It is familiar from the theory of finite Markov chains and also
from renewal theory that if a long-run or steady-state condition is
reached by a stochastic model, then the nature of the approach is often
essentially exponential. In particular, if, in Model 1, U ~ exp(Ad),

D ~ exp(u) then for A(0) = 1,

A(t) = (3.1)
Such a time dependence is exhibited approximately by the M/G/1 queue;
see Odoni and Rothl3: Morsel?’15 | 4nd later Kielson!®. and others have
assessed the relaxation times of various queueing systems. See also
Gaver and Jacobsll for a brief discussion of the time-dependent M/G/1
queue utilizing such a representation.

It is well-understood that natural generalizations of the Markov
formulation producing (3.1) can, for certain models, lead to damped
oscillatory approach to a steady-state value a(o0), or to ultimate
approach that is exponential modified by a negative power of t.
However, in what follows we shall assume that the “error” at time t is

approximately exponential:

e(t) = A(t) - A(x) =~ ae ", (3.2.,a)

or. more elaborately .,

~ (agting)e O Lo Ciay)e TN (3.2.b)




and investigate ways of assessing parameter values from (a) perfectly
specified models, wherein the distributions of U, D are presumed known,
and (b) from data. This section deals with problem (a).

The motivation for considering simple exponential model (3.2) is
the desire for an easily comprehended and computed assessment of time-
dependent availability at a fixed demand or observation time
(abbreviated FOBS). In many cases encountered such an assessment (or
assessments) of a and g or of a;, a,, r and @ can provide a useful sense
of the behavior of A(t) as time progresses without the necessity of an
extremely time-consuming and computer-intensive transform inversion
procedure or of a symbolic inversion in terms of polynomial roots; the

b

latter is "explicit.” but hardly comprehensible in general.

Simulations and numerical solutions of governing integral equations are
also useful approaches, but they are generally more computationally
intensive than our proposals here.

We suggest several ways of matching an exponential to A(t) by

utilizing the transform A(s), presumed given.

3.1 Method 1: Least Squares, Unweighted and Weighted (”Tuned”)

Begin by considering (3.2,a). If

e(t) = A(t) - A(); (3.3)
we wish to represent this “error” by &(t) = aeﬂh. Consider
o0 00
Afa,d) = J (e(t)-2(t) Rt = J (e(t)-ae™Var | (3..4)
0 0
13




the integrated squared error; the object is to minimize A by choice of

a and 8. Differentiation on o easily gives the cptimizing condition

0
apg = 28 J e(t)e_ﬂtdt = 28&(B) = 23[5‘(@ - A(ﬂ°°)] ; (3.5)

i.e. ag is evaluated in terms of the known Laplace +*ransform of A(t)
and of e(t), evaluated at 3. To find a minimizing f it is possible to

proceed by squaring the integrand of (3.4), discarding the ez(t) part,

and substituting ag for a. Simplification leads to
-8(ag(8),8) = B(8) = -26[&(8)) (3.6)
which can be readily searched for a global maximum, 4. It is easily

verified analytically that if U ~ exp(A), D ~ exp(g) in Model 1 then
Bg = A 4+ p, as it should. In general the search of (3.6) must be
conducted numerically.

The straightforward least-squares procedure can be tuned towards
different time ranges by appropriate weighting. We may seek to

minimize

A(a,fiw) = I:Ye(t)—aeﬁh)2w(t;r)dt (3.7)

where

1 near r
w(t:rT) = { (3.8)

0 far from r.

11
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Then the minimizing o and f# values, now ag(7), Bg(r), should lead to an
exponential approximation that performs especially well near 7--
although perhaps less well further away. Again it is convenient to
select an analytical form for w(t;r) that is compatible with the
Laplace transform, i.e. involves linear combinations of exponentials.
An example is the density function of exponential order statistics;

this device was used in a numerical transform inversion scheme

(Gaver1o; Gaver and Jacobsll! mention the idea in the present context).
Here is a specific example of weighting. Let
-put -ut ~ut -2ut -3t
w(t;r) = 3e’1-e“u(1—e“) = 3(e “y-e [‘p) (3.9)
where p = é%. Then minimization leads first to
Al o By _-Bt -2pt  -3pt
e = J (e@}ae )e -S(e p-e p)dt = O

0

which gives

&(B+2p) - &(B+3p) - a(2ﬁ12“ - 2ﬁ13#) =0 (3.10)
or

e(B+2p) - e(f+3p)

ag(B) = 1/(28+2u) - 1/(28+3p)

= [&(8+2n) - &(B+3u)] (2ﬁ+2”1f26+3”) . (3.11)

15
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Squaring and omitting the term in e?(t) delivers

-a(a0(8),8) = B(B) = (28+2u) (26+3p) [&(B+2p) -2 (B+3u)]? (3.12)
which can be easily searched for a global maximum. The estimation
procedure is tuned towards r = é% in this case. A sharper tuning can

be accomplished by a weight function that concentrates more tightly
around 7 than does (3.9):; the latter is recognizably the density of the
median of a sample of size 3 from an exponential df. If w is the

density of the mth order statistic of a sample of n exponentials then

i is 1|1 1 1 ] .1 _ i i -
its mean is 3if + v TR AIIRI & n—m+1J i In(1 h) and its variance is
~ ia E(£¥£:TS if m is proportional to n. As n increases the density
function of w = w, approaches a Gaussian/Normal density with variance

decreasing like 1/n, which is essentially a delta function at r as n —

[o o3

3.2 Method 2: Derivative Matching: Exploiting Random 0Observation
Times (ROBS).

. . . . -pt
Since i1t is proposed to approximate e(t) = A(t)-A(>) by aela, and
since the transforms of both sides are known (or can be estimated from
data) one may contemplate determining a and 8 as the solution of

_ [ wr ) du _ 1 )
e(r) = . e AU -A(e)] GH o= FA(1/T)=A(0)

oo u/T Pu 1
- - " . .
= e ae S = a —— 3.13
J T 1497 ° ( )
0
that is, the svstem is observed at a random exponential time having
mean . One choice for r is t. Obviously anyv o, 3 so found must

16




implicitly depend upon 7; in many situations for which the exponential
is nearly correct the dependency of 8 and a on = will be gentle. Here

are two derivative-like prescriptions for finding a(r), B8(7):

(a) Solve
1,804 0) =r(r+08) = 1/2(r + 8)
(3.14)
14,5 2 a) =r(r - B) = 1/&(r - A)

for a = a(r;A), B = B(r;d).

(b) Invert and analytically differentiatc at an interesting r-value

clr) — - r - 1,8 3.15
) A(1/r) - tA(0) % ¢ ( )
ei(ry = 2 (3.16)
Now solve simultaneously for f8(r), a(r). A good diagnostic step is

to plot a(7) and 8(r) vs. r; if the plots are nearly constant with 7
then the exponential provides a useful form; if the change is gradual
it can potentially be represented by an empirical function, e.g. a low-
order polynomial.

It is also possible to match the exponential approximation by 7-
tuning, as was done by the weighting procedure of (3.7). Simply

observe the system with probability density

wi{t:ir) = c(n,m)(1—e_”t)m'le-#tp(e_ut)"'m ; (3.17)

it is convenient to take n odd and m = [n/2].




3.3 Method 3: Matching Transform Means.

The following procedure represents another possibility for

assessing #. Put a = 1 - A(x») and write

A(t) = A(o0) + (1 - A(o0))P(t)

and, denoting the transform of P by p,

f” seStA(t)dt = sA(s) = A(o) + (1 - A(o0))sp(s)

(3.19)

Note that if

A(t) - A() _ Bt
1 - A(0) - ¢

then transformation yields

1

sp(s) =~ {—:—Ezgs

(1 + ﬂ(é)]sp(s) =1,

SO

1 - sp(s)
p(s)

(3.18)

(3.20)

(3.21)

e




To explicate the behavior of 8 for large t, expand (3.22) in powers of
s for s small:
s[1 - =A(s)]

3= == 3.23
sA(s) - A(o0) ( )

SE[CI{Fc(s) - Fy()}
E[CT(1 - Fu()] - BUI L - Fc(s)]

SE[C] {-s(E[C]-E{U]) + S (E[C?]-E[U2])+0(s%)}
E[C]{sE[U] - SE[U?]} - E[UJ{sE[C) - SE[C?]}+o(s?)

Thus,
: _ 2E[CI{E[C] - E[U]}
S P(S) = ERENEI0] - BICIE(V] (3.24)

It is anticipated that this expression is useful when t becomes large,
provided a simple exponential is an appropriate approximation.

We will evaluate (3.22) for s = 1/t, t being the time of interest.
It is also possible to tune this procedure to a time t as before. In

particular. setting

‘x m
. A(t) - A(x) _ .\ Bt
JO w(t:r) { T = A(o) } dt = ) w(t;rt)e (3.25)
and <nlving for g where, for example, w is as in (3.9). This tactic

will be employved for inferential purposes in Section 5 with w(t;r) of

the form in (3.9).
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4. TIME-DEPENDENT APPROACH CHARACTERISTICS ASSESSED FROM DATA.

In this section we examine situations reasonably represented as
indicated previously, but for which limited information on the up and
down times is available: only samples of finite sizes ny, for the up
times and nyg for the down times are at hand. Furthermore it is desired
to avoid using particular conventional analytical forms for the
underlying distributions; instead "non-parametric” or "distribution-

.

free” methods will be invoked. Finally, the availability at a finite

time after an initial moment is of interest.

4.1 Predicting Availability Assuming EROBS: Point and Interval

Estimates.

Suppose we wish to estimate the availability of a Model 1-type
system at a random (exponential) time with mean v, i.e. assuming EROBS.
Data are available on the up times and down times:

Up, Upe ..., Upg,s

(llq dzq e e dnd
are the respective observations; although the order of observation is
u;, dy, up, dy, ... etc., it will first be assumed that the u;’s and %ﬁs
are independently sampled from fixed distributions F; and Fp, but the

latter process is otherwise unspecified.

A natural non-parametric procedure is to define the sample or

empirical transforms

=
c
'
0
<
|~
a
'
[
=5

dy(=) = 1—113 e dp(s) = 7 e ! (4.1)

i
li
1@

and to utilize these in place of the population or true transforms that
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appear in (2.4) as a solution to the problem posed. Thus a non-

parametric estimate of the desired availability is

1 - ¢y
1 - ¢u(7'_1)¢o(‘r-1)

n

E[A(T)] ag(r) (4.2)
Notice that the up and down times are conveniently assumed independent
here. Procedures to deal with more complex models can and should be
devised; accommodation to possible up and down data dependencies is a
natural step, Tirst by graphics and subsequently by model fitting and
testing.

There are various options for estimating the sampling variability
of the estimate (1.2) given the basic model. A classical procedure,
adopted here, is to first note that under our assumptions both ¢,(s)
and ¢n(s) are asymptotically Gaussian/Normal by the central limit
theorem, for they are seen to be (modelled as) averages of independent
and even bounded random wvariables eiU, eﬁD: s = 1/ > 0. We find

easily that the corresponding random variables ¢,(s)., ¢p(s) are

approximately distributed as follows:

a s _ - 2
by(s) ~ N(pu(s)’ Fy(2s) nu(FU(s)) ) :

R Fp(2s) - (F )2
b (=) ~ N(Fp(s). 222 (ole))

Since a4,(r) is a probability, confined between zero and one., it i=s
reasonable to carry out further asymptotics on a transformation: we

choose to study the logistic transformation




_ do (1) } - 1-4y(s)
(r) = In|l————=| =1 (4.4)
(r) [l—ao(T) n[éu(s)(1—¢o(s)>:l

= In[1-¢y(s)] - 1In ¢y(s) - In[l1-¢5(s)]

Expand in Taylor series (the delta method) to obtain

AT o~ 1nl 20T 1 -2k, 1 Var[ép)
Efe(r)] n[l——————_ao(r)] + 5 (-—_——(1_ﬁu F‘U)z ar[éy] + 5 (—_——1~FD)2
Ny 2
~ ag(r) 1 1-2¢ 2 Sd/nd 4 =
= ln[l_ao(r)J + E{((—-——-l—ou)ouu)z)su/ﬂu + (——1‘d’D)2} » (4.5)

where we have replaced f:‘U and FD by their estimates ¢, and ¢ in the

correction term. Furthermore,
varft(r)] ~ ——L Var[¢y] + —1 Var [¢p]
) (Fur-Fy) )2 (1-Fp)?
9 2
LAy s5/n
=i/ /e g (4.6)
(oy(1-¢y)) (1-¢p)

We have put

and

Finally., approximate a-100% confidence limits are given by




A Zayy © Sy < Infag(r)/(1-ag(r))] < & + Z).a/aSt (4.8)

and

=0

e*

3
=4

1-¢y(1/7) )_ 1{( 1-2¢y, )S

2
2 24
1n(¢u(1/r)(1—¢0(1/r)) 2\\((1-6y) 0y,) 2 } ; (4.9)

1 _d
(1-¢5)2 Md

while s, = \s% from (4.6). The expression (4.8) is then inverted to
provide two-sided confidence limits for the actual availability. A

numerical example is provided in a later section.

4.2 Predicting Availability Semi-Parametrically at Fixed Time

(According to FOBS).

Utilize the same data as that In section 4.1 but suppose we wish

to estimate

A(t) = A(x) + aePt | (14.10)

After some experimentation it has been found that Method 3 above can be

most easily and effectively adopted to estimate 3 and ao: in (3.1R8) pnt

>
~
o
Nt
I
=

(1.

+
o
9

and estimate 3 by evaluating the empirical version of (3.22). In the

<implest case (Model 1), the empirical version of p(s) i=s given by

"

1-0y(=)
l"Clc(S) iyl
d

|

+ (=

<P (=) =

i
|
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so the estimator of (3.22) is
Be(s) = L= SP(s) (4.13)

5(s)

- -3ut
w(t;r) = 3;1(632#t - 83#]

in (3.25) results in the equation

3ulp(21) - P(3u)] = 3p &zu + ﬁf?B# + 5)]

8% + 5uB + 642 - - H__ =0 4.14
# # p(2u) - p(3p) ( )

a quadratic in 3. The positive solution to (4.14), fBq, gives another

estimate of J:

p 2 = . = -1 =

Bq = %[-5ﬂ + JL + dulp(2p) - BP(3w)]7"] (4.15)
where pu = é%. In practice Bq may occasionally be negative or imagi-
nary., in which case a reasonable alternative is required. In our simu-

lation, tests of the procedure defaulted to an estimate appropriste for

U.D independent and ex,ponentially distributed. i.e. 3 = (% + %). How-
<

ever in general a non-positive 3 may indicate inappropriateness of the
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exponential-approach model (4.10) so a problem-dependent alternative
must be sought.

The asymptotic behavior of the proposed estimates is not explored
here. 1In the following section we describe bootstrapping (sample re-

use) procedures and results for accessing sampling variability of

estimates of A(t) and f.
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5. NUMERICAL ILLUSTRATIONS BY SIMULATION.
The procedures described earlier will now be illustrated, and to

some degree tested, using simulated data.

5.1 Predicting Availability under EROBS: Illustrations

Refer to Section (4.1) for tl.e basic approach to be utilized.
Suppose that ny = ny observations are available on iid exponentially
distributed up and down time random variables; E[U] = 1, E[D] = 4.
These data are to be processed utilizing expressions (4.8) and (4.9).
To do so, a total of ns = 500 independent simulations were carried out
for the cases ny, = ng = n = 10, and ny = ng = n = 25. In Table 5.1 are
reported the mean values of the estimates of availability at an
exponential time with various means r. Results on 95% confidence
levels a'e also given (average values in parentheses).

In order that the point and interval estimates behave as well as
they do for small samples (n =~ 10) the bias correction recognizable in
(4.9) is required, and the normal percent-points are best replaced by
Student t percent-points with n-1 degrees of freedom. An alternative
to the above procedures is to apply the jackknife; see Gaver and ChuG.
Howeveir, the present method is perhaps more easily carried out on small
computers utilizing nominal confidence levels (1-a)-100%. The fraction
of the confidence limits covering/surrounding true availability at r
was tabulated. as were the mean upper and lower confidence limits on
availability. The following table provides a summary of the results:

as can be seen the coverage is close to the nominal 957%.
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Table 5.1

Coverage and Mean Confidence Limits, EROBS
Nominal Confidence Level 95%
r-Values

0.125 1.00 10.00
True: (lower) 0.92 (upper) (lower) 0.83 (upper) (lower) 0.80 (upper)
Availability: Estimated: (0.71) 0.90 (0.96) (0.66) 0.84 (0.93) (0.63) 0.81 (0.91)
(n = 10)
Coverage (%) 94 96 94
Availability: Estimated (0.82) 0.93 (0.97) (0.74) 0.83 (0.90)  (0.70) 0.80 (0.88)
(n = 25)
Coverage (%) 93 97 96

The figures in parentheses represent mean upper and lower confidence
limits; notice that, as anticipated, these tend to move towards the

true values as the sample size increases.

5.2 Predicting Availability under FOBS: Illustrations

Again we use simulation to assess the accuracy of the proposed
exponential approximations given in Section 3.

It has been found experimentally that the empirical-transform-
adapted least-squares approaches of Section 3.1 tend to be numerically
unstable for small sample sizes; they behave well when component models
are assumed perfectly specified ("known”) or for very large sample
sizes. On the other hand, Method 3 of Section 3.3, adapted to the
empirical transform as outlined in Section 4.2, performs satisfactorily
for the various cases considered and is not computationally intensive.

Simulation results for three different estimators for A(t) are

reported. The estimators are all of the form




where
~ u
T =
i+ d
The estimators differ in the manner in which g is estimated. The first

estimate, Ap(t), estimates [ by

Bp = (! + daly . (5.2)

Note that Ap(t) is the estimator that would be obtained if it were
simply assumed that {U;} and {D;} are independent sequences of
independent exponential random variables and maximum likelihood is used

to obtain estimates of A(t), i.e. if the simplest Markov model were

automatically invoked. The second estimator, Ae(t), estimates 3 as in
(4.13) with s = %. The third estimator, Aq(t), estimates £ as in
(4.15) with p = é%. If the estimated f’s are negative then 8 is set

equal to fBp, the MLE estimator of 3 if it were known that {U;} and {D;}
are independent sequences of independent identically distributed
exponential random variables. In our experience such pathological
cases are rare.

All simulations were done on an IBM 3033 AP at the Naval

Postgraduate School using the LLRANDOMII random number generating

package: Lewis and Uribel!”. The simulations reported in Tables (5.2)
and (F7.3) have 500 replications. Generated in each replication is a
sample of ny = 25 up times and ny = 25 down times. In the experiment

rcported in Table (5.2) the up times and down times are independent.

Three distributions are used to generate the down times:




=

Table 5.

2
Fstimates of Availability
Independent Up and Down Times
Dist

Time True

Ap(v)

Bp Be Aelt) Bq Aqg(t)
A(t) Mean Var Mean MSE Mean Var Mean MSE Mean Var Mean MSE
(Median) (Median) (Median)
.2 A 83 3.1 .14 85 .03 3.8 42 83 .06 38 4.7 .83 .06
(3.1) {3.4) (3.4)
.5 (Gamma) .71 3.1 14074 .05 4.6 34 72 .06 4.5 23 72 .06
(3.1) (3.6) (3.7)
1.0 .67 3.1 .14 .68 .05 4.7 48 .68 .05 4.6 23 .68 .05
(3.1) (3.6} (3.5)
2 B .83 3.1 23 .85 .03 34 3.2 .85 .05 3.3 3.1 .85 .06
(3.1) (3.0) (3.0)
.5 (Exp) .74 3.1 23 .74 .04 3.5 4.7 .14 .06 3.5 4.7 .74 .06
(3.1) (3.0) (3.0)
1.0 .68 3.1 23 .68 .05 3.7 14 .69 .06 3.9 18 .69 .06
(3.1) (3.0) (3.0)
.2 C .90 4.4 6.7 .86 .06 3.4 38 91 .03 3.5 52 91 .03
(3.4) (1.7) (1.8)
.5 (M. Exp.) .87 4.4 6.7 .77 .13 2.9 57 .87 .04 2.5 14 .87 .04
(3.4) (1.2) (1.2)
1.0 .84 4.4 6.7 72 A7 2.5 26 .82 .06 1.9 6.1 83 .06
(3.4) (1.0} (.92)
2.0 79 4.4 6.7 .70 A7 2.5 75 77009 1.8 9.8 .78 .08
(3.4) (.87) (.80)
Table 5.3
Estimates of Availability
Dependent Up and Down Times
bubo . ¢c .
Time Case True Bq Ag(t) Bq Ag(t)
A(t) Mean Var Mean MSE Mean Var Mean MSE
0.2 DA .94 3.1 1.7 .85 .10 1.0 .13 .94 .02
0.5 .87 3.1 1.1 .75 .13 1.0 .07 .87 .03
1.0 7 3.1 1.0 .69 .11 1.0 .07 .79 .03
2.0 .72 3.2 1.9 .67 .05 1.1 .09 .71 .02
0.2 DB .97 3.1 14 .91 .07 73 5.1 .97 .02
0.5 .93 2.4 11 .87 .07 K3 3.8 .93 .03
1.0 L8R 2.0 T.2 .83 .07 .79 .56 L RR .05
2.0 LR1 1.8 8.0 TR .08 L8R3 .45 .1 LO7
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1 - e - gte™, ¢t > 0 ; (Gamma)

A: P{D > t}

B: P{D > t} e, t >0 ; (Exponential)

C: P{D >t} = .9 +.1%%, ¢t > 0 ; (Mixed Exponential).

The up times are generated from an exponential distribution with unit

mean. The theoretical values of A(t) in each of these cases are

A: A(t) = .67 + e*5[.33 cos(1.9t) + .26 sin(1.9t)] ; (5.3)
B: A(t) = .67 + .33e3t ; (5.4)
C: A(t) = .67 + .24e 3 4 09e9° | (5.5)

For each replication of the simulations whose results are reported in
Table (5.2) the three estimates of A(t) are computed. The mean, and
mean square error (MSE), of Ap(t), Ae(t) and Aq(t) are computed: i.e.

the mean is

_ 1 500 .

Re(U) = 500 lAeUut) (5.6)
and

MSE = =L~ %? (Ae(kit) - A(t))?2 (5.7)

M 500 &, trelrd g :

where ;\e(k:t,) is the point estimate at t in the kth realization.

Furthermore, the mean and variance of the estimates of 3 are displayed.

5.3 Discussion of Tables.

Table (5.2) reports results for simulations with data sample sizes

25. Not surprisingly, the exponential estimator Ap(t) has means equal

to the values of A(1) and the smallest mean square error in the case B
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of exponential down times. The means of Ap(t) are somewhat different
from the A(t)’s in case A (gamma down times) and quite different in
case C (mixed exponential down times). The estimators Ae(t) and Aq(t)
have means which are closer to the A(t)’s than those of Ap(t) in cases
A and C. The means of A¢(t) and Aq(t) are a bit low for t = 1, 2 in
case C. In cases A and B the values of the MSE of A.(t) and Aq(t)
indicate the greater variability of these estimators. In the
exponential case B, the true value of 8 is 3; the estimator 39 has
means closest to 3 for case B and much smaller variances compared to fe
and Bgq. In the other two cases p(t) is not of the form e*ﬁ; the

theoretical values of A(t) are given in (5.3) and (5.5).

In case A (gamma distributed down times) the single parameter, §,

of exponential decay is 4.5. The means of the estimators, fe and f4 are
closer to this value than those of g;. In case C of mixed exponential
down times, the smallest parameter of exponential decay is 0.341. Once

again the means of g and fq are closer to this value than are those of
Bp. The variances of f8q and fBe for the sample size of 25 can be large.
In many cases the variance of g is less than that for fe. Increasing
the sample size decreases the variances, as is anticipated.

Table (5.3) summarizes a simulation study of the procedure of
Section 4.2 in two cases in which the pairs (U;,D;) are independently
and identically distributed with U, and D; perfectly dependent. The two
cases are:

DA: U = £Fk and D; = %Ei with {E;} independent identically
d'stributed exponentials with unit mean.

{%Ei with probability .9,

C
=
=
i

B!
=
2
=
[

4k, with probability .1
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with {E;} independent exponential random variables with unit mean. In
case DA
= 2 1 -t
A(t) = 5+t3e (5.8)

In case DB

A(t)

I
WiN
+
o

.11et + 0.22e7027 | (5.9)

In the simulations two estimators for ﬁc(s) are used. The first
(incorrectly) assumes that {U;} and {D;} are independent and uses
¢y(s)ép(s) to estimate Fc(s). The second does not assume independence.,

and instead estimates ﬁc(s) by

N .s[u;+d.]
bc(®) =ac L oe T (5.10)
1=
The table shows results for the estimators Aq(t) and Bq. The sample

size is 25 and there are 500 replications.

Table (5.3) informs us that the estimators may be noticeably
sensitive to the choice of the estimator of Fc(s). If U, and D; are
dependent, then using ¢, (s)¢p(s) to estimate ?C(s) can be quite
misleading. As a result, it is suggested that if there is a
possibility that U; and D; may be dependent, ¢-(s) is the more model-
robust estimate of Fc(s), and hence of the desired availabilities.

Note that in case DA, A(t) has exactly the presumed form of
(4.10). When d¢ is used in this case, the mean value of the Bq”s equal

the theoretical value of unity in all but the case t = 2.0, In case
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DB, p(t) is actually a mixture of two exponentials, one having rate
unity and the other having rate 0.27; when ¢. is being used, the mean
values of the Bq’s fall between the two correct rates. Emphasis of
either rate, and the corresponding probability, can be achieved by

weighting.

-

5.4 Semi-Parametric Confidence Intervals Illustrated.

Table (5.4) shows bootstrap confidence intervals for Aq(t) and jq
at various times. A single sample of 25 up times and 25 down times is
generated by simulation. The up times are independent with unit-mean
exponential distribution; they are independent of the Anwn times. The
down times are independent with the gamma distribution, case B. One
hundred bootstrap replications were then carried out and Aq and Bq are
computed for each replication. Both estimators of ﬁc(s), dy(s)ép(s)
and ¢c(s), are used. Table (5.4) exhibits the 5th, 50th, and 95th
order statistics of the estimates which give 957 confidence intervals
of the parameters.

All confidence intervals for g, cover the true values for the
particular sample utilized. The confidence intervals for f§q cover the
exponential decay parameter of value 4.5, for the gamma case. The
confidence intervals for Aq(t) are the same for both methods of
est.imating ﬁc(s) suggesting that not much is lost by using éc(s) to
estimate ﬁc(s) in the independent case. As a result it is suggested
that if there is a possibility that {U} and {D,;} may be dependent then
¢c(s) is the more robust estimate of pc(s).

A similar bootstrap experiment was carried out with a single

sample of 25 up times and 25 down times generated from model DA in
which the up and down times are dependent. Une hundred bootstrap i
33
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Table 5.4
Bootstrap Confidence Intervals

Gamma Distributed Down Times
Independent Up and Down Times

. ) ¢u%D . ) ¢c.
Time True Bq Aqlt) Bq Aq(t)

A(t) .05 .50 .95 .05 50 95 .05 50 95 .05 .50 .95

2 .83 1.6 4.1 136 .71 .84 92 16 3.9 11.8 .71 .84 .92
5 71 24 41 129 61 .73 8 24 39 98 .61 .73 .82
1 67 23 34 163 58 .71 .79 2.2 3.4 19.1 AHROTLLT9

replications were generated and Aq and Bq computed for each replication
with both estimators of Pc(s). Once again the resulting confidence
intervals for A(t) were very similar for both estimators of Fc(s).

0f course the above results are quite fragmentary, but seem useful
and promising. Further sampling experiments and asymptotic aralyers
will shed more light on the behavior of the estimating procedures

explored, and may well suggest alternations or replacements.
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6. CONCLUDING COMMENTS.

This paper argues that probability models of the availability of
various systems can be expressed in terms of Laplace transforms, and
that the finite-time behavior of such systems can be inferred, nearly
non-parametrically, from data. Qur approach has been to invoke the
empirical Laplace transforms and to utilize its easy direct interpreta-
tion (EROBS), in conjunction with a presumed apprcximate exponential
rate of approach to steady state, to deduce availability at a fixed
finite time after a known initial moment (FOBS).

The methods proposed are distinguished by their simplicity and

moderate computer intensivity as well as by their lack of direct

" 1”

dependence upon probability models in and “down” times selected

up
from conventional families such as the Gamma. Simulations have been
used to evaluate the procedures suggested, and to provide approximate
confidence limits, either by asumptotics (utilizing the approximately
Normal /Gaussian behavior of the empirical transform), or by a simple
re-sampling, Efron’s bootstrdplg. 1l paistlicular, we have examined the
effect on inference quality of assuming the wrong joint probability
model: one that falaciously assumes independence when dependence
(between up and down times) is actually present.

No claim is made that the methods proposed here are the best
availlable: in fact there are many alternatives. 0One is to analytically
invert the empirical transform of availability possibly by use of the
Stehfert algorithmlg, although competitors are available. Another is
to bootstrap directly: the latter exercise involves re-sampling up and

down t.imes from the observed data, to reconstruct the sample path of

the preocess. and to score 1 at time t if an up time covers t. otherwise




score 0. Finally., A(t) is estimated by the proportion of (re)samplex
that count 1. Confidence limits are available from the basic bootstrap
technology. The direct bootstrap approach is being investigated by
LeeQO. Another option is to replace the distribution functions in the
renewal equations for availability by their empirical counterparts and
numerically solve the empirical renewal (Volterra-type) equations, with
subsecuent. bootstrap follow-ups to assess uncertainty. All such
methods promise to be far more computationally intensive than our
present approximate approaches. Their investigation has been deferred.
Application of our approximation procedure to infer the M/G/1 queue

finite~-time behavior is under way: Jacobs and (Ia\'(‘r]].
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